Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(10): e0240517, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052980

RESUMO

Mitochondrial diseases are a clinically heterogenous group of disorders caused by respiratory chain dysfunction and associated with progressive, multi-systemic phenotype. There is no effective treatment or cure, and no FDA-approved drug for treating mitochondrial disease. To identify and characterize potential therapeutic compounds, we developed an in vitro screening assay and identified a group of direct AMP-activated protein kinase (AMPK) activators originally developed for the treatment of diabetes and metabolic syndrome. Unlike previously investigated AMPK agonists such as AICAR, these compounds allosterically activate AMPK in an AMP-independent manner, thereby increasing specificity and decreasing pleiotropic effects. The direct AMPK activator PT1 significantly improved mitochondrial function in assays of cellular respiration, energy status, and cellular redox. PT1 also protected against retinal degeneration in a mouse model of photoreceptor degeneration associated with mitochondrial dysfunction and oxidative stress, further supporting the therapeutic potential of AMP-independent AMPK agonists in the treatment of mitochondrial disease.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Tiazóis/administração & dosagem , meta-Aminobenzoatos/administração & dosagem , Regulação Alostérica/efeitos dos fármacos , Animais , Compostos de Bifenilo , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Camundongos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Pironas/administração & dosagem , Pironas/farmacologia , Tiazóis/farmacologia , Tiofenos/administração & dosagem , Tiofenos/farmacologia , meta-Aminobenzoatos/farmacologia
2.
Sci Rep ; 9(1): 15355, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653972

RESUMO

We investigated the effects of treating differentiated retinal pigment epithelial (RPE) cells with didanosine (ddI), which is associated with retinopathy in individuals with HIV/AIDS. We hypothesized that such treatment would cause depletion of mitochondrial DNA and provide insight into the consequences of degradation of RPE mitochondrial function in aging and disease. Treatment of differentiated ARPE-19 or human primary RPE cells with 200 µM ddI for 6-24 days was not cytotoxic but caused up to 60% depletion of mitochondrial DNA, and a similar reduction in mitochondrial membrane potential and NDUFA9 protein abundance. Mitochondrial DNA-depleted RPE cells demonstrated enhanced aerobic glycolysis by extracellular flux analysis, increased AMP kinase activation, reduced mTOR activity, and increased resistance to cell death in response to treatment with the oxidant, sodium iodate. We conclude that ddI-mediated mitochondrial DNA depletion promotes a glycolytic shift in differentiated RPE cells and enhances resistance to oxidative damage. Our use of ddI treatment to induce progressive depletion of mitochondrial DNA in differentiated human RPE cells should be widely applicable for other studies aimed at understanding RPE mitochondrial dysfunction in aging and disease.


Assuntos
Diferenciação Celular/genética , DNA Mitocondrial/metabolismo , Células Epiteliais/metabolismo , Epitélio Pigmentado da Retina/citologia , Adenilato Quinase/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Didanosina/farmacologia , Células Epiteliais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos
3.
Commun Biol ; 2: 186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123710

RESUMO

The retinal pigment epithelium (RPE) serves vital roles in ocular development and retinal homeostasis but has limited representation in large-scale functional genomics datasets. Understanding how common human genetic variants affect RPE gene expression could elucidate the sources of phenotypic variability in selected monogenic ocular diseases and pinpoint causal genes at genome-wide association study (GWAS) loci. We interrogated the genetics of gene expression of cultured human fetal RPE (fRPE) cells under two metabolic conditions and discovered hundreds of shared or condition-specific expression or splice quantitative trait loci (e/sQTLs). Co-localizations of fRPE e/sQTLs with age-related macular degeneration (AMD) and myopia GWAS data suggest new candidate genes, and mechanisms by which a common RDH5 allele contributes to both increased AMD risk and decreased myopia risk. Our study highlights the unique transcriptomic characteristics of fRPE and provides a resource to connect e/sQTLs in a critical ocular cell type to monogenic and complex eye disorders.


Assuntos
Epitélio Pigmentado da Retina/metabolismo , Oxirredutases do Álcool/genética , Células Cultivadas , Mapeamento Cromossômico , Metabolismo Energético , Feto/citologia , Feto/metabolismo , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Degeneração Macular/genética , Miopia/genética , Degradação do RNAm Mediada por Códon sem Sentido , Locos de Características Quantitativas , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/embriologia , Fatores de Risco , Transcriptoma
4.
Mol Vis ; 24: 425-433, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034209

RESUMO

Purpose: The Seahorse XFp platform is widely used for metabolic assessment of cultured cells. Current methods require replating of cells into specialized plates. This is problematic for certain cell types, such as primary human fetal RPE (hfRPE) cells, which must be cultured for months to become properly differentiated. Our goal was to overcome this limitation by devising a method for assaying intact cell monolayers with the Seahorse XFp, without the need for replating. Methods: Primary hfRPE cells were differentiated by prolonged culture on filter inserts. Triangular sections of filters with differentiated cells attached were excised, transferred to XFp cell culture miniplate wells, immobilized at the bottoms, and subjected to mitochondrial stress tests. Replated cells were measured for comparison. Differentiated hfRPE cells were challenged or not with bovine photoreceptor outer segments (POS), and mitochondrial stress tests were performed 3.5 h later, after filter excision and transfer to assay plates. Results: Differentiated hfRPE cells assayed following filter excision demonstrated increased maximal respiration, increased spare respiration capacity, and increased extracellular acidification rate (ECAR) relative to replated controls. hfRPE cells challenged with POS exhibited increased maximal respiration and spare capacity, with no apparent change in the ECAR, relative to untreated controls. Conclusions: We have developed a method to reproducibly assay intact, polarized monolayers of hfRPE cells with the Seahorse XFp platform and have shown that the method yields more robust metabolic measurements compared to standard methods and is suitable for assessing the consequences of prolonged perturbations of differentiated cells. We expect our approach to be useful for a variety of studies involving metabolic assessment of adherent cells cultured on filters.


Assuntos
Bioensaio , Respiração Celular/efeitos dos fármacos , Células Imobilizadas/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Pigmentos da Retina/farmacologia , Animais , Transporte Biológico , Bovinos , Diferenciação Celular , Respiração Celular/fisiologia , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Cultura em Câmaras de Difusão , Metabolismo Energético/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feto , Humanos , Mitocôndrias/metabolismo , Fagocitose/fisiologia , Cultura Primária de Células , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/isolamento & purificação
5.
Bio Protoc ; 7(7)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29177186

RESUMO

The electroretinogram (ERG) is a sensitive and noninvasive method for testing retinal function. In this protocol, we describe a method for performing ERGs in mice. Contact lenses on the mouse cornea measure the electrical response to a light stimulus of photoreceptors and downstream retinal cells, and the collected data are analyzed to evaluate retinal function.

6.
Adv Exp Med Biol ; 854: 709-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427479

RESUMO

Retinal pigment epithelium (RPE) cell migration in response to disease has been reported for age-related macular degeneration, proliferative vitreoretinopathy, and proliferative diabetic retinopathy. The complex molecular process of RPE cell migration is regulated in part by growth factors and cytokines, and activation of the PI3/AKT/mTOR signaling pathway. Rapamycin, an allosteric mTOR inhibitor, has been shown to block only one of the primary downstream mTOR effectors, p70 S6 kinase 1, in many cell types. INK128, a selective mTOR ATP binding site competitor, blocks both p70 S6 kinase 1 and a second primary downstream effector, 4E-BP1. We performed scratch assays using differentiated ARPE-19 and primary porcine RPE cells to assess the effect of mTOR inhibition on cell migration. We found that INK128-mediated blocking of both p70 S6 kinase 1 and 4E-BP1 was much more effective at preventing RPE cell migration than rapamycin-mediated inhibition of p70 S6 kinase 1 alone.


Assuntos
Benzoxazóis/farmacologia , Movimento Celular/efeitos dos fármacos , Pirimidinas/farmacologia , Epitélio Pigmentado da Retina/citologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Immunoblotting , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sirolimo/farmacologia , Suínos , Serina-Treonina Quinases TOR/metabolismo
7.
PLoS Genet ; 11(12): e1005723, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26656104

RESUMO

Inherited photoreceptor degenerations (IPDs) are the most genetically heterogeneous of Mendelian diseases. Many IPDs exhibit substantial phenotypic variability, but the basis is usually unknown. Mutations in MERTK cause recessive IPD phenotypes associated with the RP38 locus. We have identified a murine genetic modifier of Mertk-associated photoreceptor degeneration, the C57BL/6 (B6) allele of which acts as a suppressor. Photoreceptors degenerate rapidly in Mertk-deficient animals homozygous for the 129P2/Ola (129) modifier allele, whereas animals heterozygous for B6 and 129 modifier alleles exhibit an unusual intermixing of degenerating and preserved retinal regions, with females more severely affected than males. Mertk-deficient mice homozygous for the B6 modifier allele display degeneration only in the far periphery, even at 8 months of age, and have improved retinal function compared to animals homozygous for the 129 allele. We genetically mapped the modifier to an approximately 2-megabase critical interval that includes Tyro3, a paralog of Mertk. Tyro3 expression in the outer retina varies with modifier genotype in a manner characteristic of a cis-acting expression quantitative trait locus (eQTL), with the B6 allele conferring an approximately three-fold higher expression level. Loss of Tyro3 function accelerates the pace of photoreceptor degeneration in Mertk knockout mice, and TYRO3 protein is more abundant in the retinal pigment epithelium (RPE) adjacent to preserved central retinal regions of Mertk knockout mice homozygous for the B6 modifier allele. Endogenous human TYRO3 protein co-localizes with nascent photoreceptor outer segment (POS) phagosomes in a primary RPE cell culture assay, and expression of murine Tyro3 in cultured cells stimulates phagocytic ingestion of POS. Our findings demonstrate that Tyro3 gene dosage modulates Mertk-associated retinal degeneration, provide strong evidence for a direct role for TYRO3 in RPE phagocytosis, and suggest that an eQTL can modify a recessive IPD.


Assuntos
Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Degeneração Retiniana/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Fagocitose , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/patologia , c-Mer Tirosina Quinase
8.
PLoS One ; 9(5): e94549, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24804771

RESUMO

Early cochlear development is marked by an exuberant outgrowth of neurites that innervate multiple targets. The establishment of mature cochlear neural circuits is, however, dependent on the pruning of inappropriate axons and synaptic connections. Such refinement also occurs in the central nervous system (CNS), and recently, genes ordinarily associated with immune and inflammatory processes have been shown to play roles in synaptic pruning in the brain. These molecules include the major histocompatibility complex class I (MHCI) genes, H2-K(b) and H2-D(b), and the complement cascade gene, C1qa. Since the mechanisms involved in synaptic refinement in the cochlea are not well understood, we investigated whether these immune system genes may be involved in this process and whether they are required for normal hearing function. Here we report that these genes are not necessary for normal synapse formation and refinement in the mouse cochlea. We further demonstrate that C1qa expression is not necessary for normal hearing in mice but the lack of expression of H2-K(b) and H2-D(b) causes hearing impairment. These data underscore the importance of the highly polymorphic family of MHCI genes in hearing in mice and also suggest that factors and mechanisms regulating synaptic refinement in the cochlea may be distinct from those in the CNS.


Assuntos
Sistema Nervoso Central/metabolismo , Cóclea/metabolismo , Audição/fisiologia , Animais , Sistema Nervoso Central/fisiologia , Cóclea/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Audição/genética , Camundongos , Camundongos Knockout , Sinapses
9.
PLoS One ; 9(5): e96805, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24820477

RESUMO

Common genetic variants 3' of MC4R within two large linkage disequilibrium (LD) blocks spanning 288 kb have been associated with common and rare forms of obesity. This large association region has not been refined and the relevant DNA segments within the association region have not been identified. In this study, we investigated whether common variants in the MC4R gene region were associated with adiposity-related traits in a biracial population-based study. Single nucleotide polymorphisms (SNPs) in the MC4R region were genotyped with a custom array and a genome-wide array and associations between SNPs and five adiposity-related traits were determined using race-stratified linear regression. Previously reported associations between lower BMI and the minor alleles of rs2229616/Val103Ile and rs52820871/Ile251Leu were replicated in white female participants. Among white participants, rs11152221 in a proximal 3' LD block (closer to MC4R) was significantly associated with multiple adiposity traits, but SNPs in a distal 3' LD block (farther from MC4R) were not. In a case-control study of severe obesity, rs11152221 was significantly associated. The association results directed our follow-up studies to the proximal LD block downstream of MC4R. By considering nucleotide conservation, the significance of association, and proximity to the MC4R gene, we identified a candidate MC4R regulatory region. This candidate region was sequenced in 20 individuals from a study of severe obesity in an attempt to identify additional variants, and the candidate region was tested for enhancer activity using in vivo enhancer assays in zebrafish and mice. Novel variants were not identified by sequencing and the candidate region did not drive reporter gene expression in zebrafish or mice. The identification of a putative insulator in this region could help to explain the challenges faced in this study and others to link SNPs associated with adiposity to altered MC4R expression.


Assuntos
Adiposidade/genética , Receptor Tipo 4 de Melanocortina/genética , Adiposidade/fisiologia , Idoso , Animais , Feminino , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Camundongos , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra
10.
Obes Surg ; 21(7): 930-4, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20957447

RESUMO

BACKGROUND: Heterozygous mutations in melanocortin-4 receptor (MC4R) are the most frequent genetic cause of obesity. Bariatric surgery is a successful treatment for severe obesity. The mechanisms of weight loss after bariatric surgery are not well understood. METHODS: Ninety-two patients who had Roux-en-Y gastric bypass (RYGB) surgery were screened for MC4R mutations. We compared percent excess weight loss (%EWL) in the four MC4R mutation carriers with that of two control groups: 8 matched controls and with the remaining 80 patients who underwent RYGB. RESULTS: Four patients were heterozygous for functionally significant MC4R mutations. In patients with MC4R mutations, the %EWL after RYGB (66% EWL) was not significantly different compared to matched controls (70% EWL) and non-matched controls (60% EWL) after 1 year of follow-up. CONCLUSIONS: This study suggests that patients with heterozygous MC4R mutations also benefit from RYGB and that weight loss may be independent of the presence of such mutations.


Assuntos
Derivação Gástrica , Mutação , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Redução de Peso/genética , Adulto , Estudos de Casos e Controles , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/cirurgia
11.
Genome Med ; 1(3): 31, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19341502

RESUMO

The extent to which common variants contribute to common phenotypes and disease in humans has important consequences for the future of medical genomics. Two reports have recently clarified this issue for one of the most pressing public health concerns, obesity. These large and comprehensive genome-wide association studies find that common variants within at least 11 genes are associated with obesity. Interestingly, most of these genes are highly expressed in the central nervous system, further highlighting its role in the pathogenesis of obesity. However, the individual and combined effects of these variants explain only a small fraction of the inherited variability in obesity, suggesting that rare variants may contribute significantly to the genetic predisposition for this condition.

12.
Hum Mol Genet ; 18(6): 1140-7, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19091795

RESUMO

Functionally significant heterozygous mutations in the Melanocortin-4 receptor (MC4R) have been implicated in 2.5% of early onset obesity cases in European cohorts. The role of mutations in this gene in severely obese adults, particularly in smaller North American patient cohorts, has been less convincing. More recently, it has been proposed that mutations in a phylogenetically and physiologically related receptor, the Melanocortin-3 receptor (MC3R), could also be a cause of severe human obesity. The objectives of this study were to determine if mutations impairing the function of MC4R or MC3R were associated with severe obesity in North American adults. We studied MC4R and MC3R mutations detected in a total of 1821 adults (889 severely obese and 932 lean controls) from two cohorts. We systematically and comparatively evaluated the functional consequences of all mutations found in both MC4R and MC3R. The total prevalence of rare MC4R variants in severely obese North American adults was 2.25% (CI(95%): 1.44-3.47) compared with 0.64% (CI(95%): 0.26-1.43) in lean controls (P < 0.005). After classification of functional consequence, the prevalence of MC4R mutations with functional alterations was significantly greater when compared with controls (P < 0.005). In contrast, the prevalence of rare MC3R variants was not significantly increased in severely obese adults [0.67% (CI(95%): 0.27-1.50) versus 0.32% (CI(95%): 0.06-0.99)] (P = 0.332). Our results confirm that mutations in MC4R are a significant cause of severe obesity, extending this finding to North American adults. However, our data suggest that MC3R mutations are not associated with severe obesity in this population.


Assuntos
Predisposição Genética para Doença , Mutação/genética , Obesidade Mórbida/genética , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética , Adulto , Estudos de Casos e Controles , Linhagem Celular , Estudos de Coortes , Biologia Computacional , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/metabolismo , América do Norte , Magreza/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...